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1.0 INTRODUCTION 

Wind tunnel tests were conducted to determine the static stability, control 
effectiveness, and performance of a 0.25-scale model of the Super-HOBOS/MK-84 munition. 
The Super-HOBOS, also called the Electrical-Optical Guided Bomb-ll (EOGB-II). is a 

high-speed air-launched glide weapon system that has evolved from the MK-84 HOBOS 
configuration. The Super-HOBOS has forward strakes, wings, and wing tips. The wing tips 
are deployed after aircraft carriage release. Control surfaces or flaps on the wings are 

used to provide aerodynamic pitch, yaw, and roll control of the vehicle. 

The tests were conducted in the Aerodynamic Wind Tunnel (4T), Propulsion Wind 
Tunnel Facility (PWT) at Mach numbers from 0.4 to 1.6 and angles of attack from -4 
to 26 deg. The effect of control flap deflections on static stability and control effectiveness 

of the Super-HOBOS configuration were determined. The control effectiveness 
characteristics were obtained by two techniques: one employing the conventional method 
of multiple flap deflections, and the other employing the technique of single flap deflections 
described in this report and Ref. I. Also the hinge moments on the control surfaces were 
determined, and the calibration of a vane-type angle-of-attack indicator located on the 
model was accomplished during the test. 

2.0 APPARATUS 

2.1 TEST FACILITY 

The Aerodynamic Wind Tunnel (4T) is a closed-loop, continuous flow, variable-density 
tunnel in which the Mach number can be varied from 0.1 to 1.3. Nozzle block inserts 
are used to obtain Mach numbers at 1.6 and 2.0. At all Mach numbers, the stagnation 
pressure can be varied from 300 to 3700 psfa. The test section is 4 ft square and 12.5 
ft long with perforated, variable porosity (0.5- to 10-percent open) walls. It is completely 
enclosed in a plenum chamber from which the air can be evacuated, allowing part of 
the tunnel airflow to be removed through the perforated walls of the test section. A 
more thorough description of the tunnel may be found in Ref. 2. 

2.2 TEST ARTICLE 

The test article was a 0.25-scale model of the Supcr-HOBOS/MK-84 (EOGB-II) 
munition. Dimensions of the Super-HOBOS model configuration and its components are 
shown in Fig. I. The Super-HOBOS configuration consists of three basic components which 
include a fuselage, strakes, and wing assemblies with four flap control surfaces. The basic 
fuselage configuration shown in Figs, la and c is a standard MK-84 bomb with the 
KMU-353X control and guidance kit and a boattail. The strakes and wing assembly are 
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shown in Figs. 1 d and e, respectively. The flap geometry is shown in Fig. 1 f, and deflection 
angles could be set at nominal values of 0, ±5, ±10. ±15, and ±20 deg by a remote 
control system. Strain-gage balances were attached to the control flaps for measuring the 
hinge moments. A vane-type angle-of-attack indicator was calibrated on the Super-HOBOS 
model and is shown in Fig. 2. Photographs of the model installed in the wind tunnel 
are shown in Fig. 3. 

2.3    INSTRUMENTATION 

A six-component, internal strain-gage balance was used to obtain the aerodynamic 
forces and moments acting on the model. Four one-component strain-gage balances were 
used to determine the hinge moments on the control flaps. Four potentiometers were 
used to measure the angular position of the flap surfaces. The outputs from the 
potentiometers were used in a closed-loop control system to maintain a specified flap 
angle setting regardless of the load on the flap. The vane-type angle-of-attack indicator 
used a potentiometer to measure the angle of rotation of the vane shaft with respect 
to fuselage centerline. Four model base pressure measurements and one model cavity 
pressure measurement were made using differential pressure transducers. Electrical signals 

from the balances, potentiometers, pressure transducers, and standard tunnel 
instrumentation were prdcessed by the PWT data acquisition system and digital computer 
for on-line data reduction. 

3.0 TEST DESCRIPTION 

3.1     GENERAL TEST PROCEDURES 

Force and moment data were obtained by two procedures as follows: 

1. The model angle of attack was varied at a constant Mach number, roll 
angle, and flap deflection. 

2. The model roll angle was varied from -180 to 180 deg in 22.5-deg increments 
at a constant Mach number, angle of attack, and flap deflection. 

Force and moment data were obtained with multiple flap deflections (four flaps) at Mach 
numbers from 0.4 to 1.6 for angles of attack from -4 to 26 deg using Procedure 1. Data 
were also obtained with a single flap deflection where flap number 1 was deflected to 

negative flap angles at Mach numbers from 0.65 to 1.05 for angles of attack of 0, 6, 
12,  16, and 20 deg using Procedure 2. 

The data are presented in the aeroballistic axis system. The orientation of the axis 
system, control flap numbering, and flap deflection sign convention is shown in Fig. 4. 
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A summary of the model configurations and flap deflections is shown in Table 1? and 
the test conditions are shown  in Table 2. 

3.2    MULTIPLE AND SINGLE FLAP TEST PROCEDURES 

3.2.1    Multiple Flap Deflection Method 

The cruciform flap configuration of the Supcr-HOBOS (KMU-353X control system) 
is governed by three control deflection equations and one control actuator equation as 

follows: 

SP = (-S1 - 52 + S3 ± S4)/4 (I) 

Sq = (SI + S2 + S3 + S4)/4 (2) 

Sr   = (-S1 + S2 - S3 + S4)/4 (3) 

SI + 8-1 = 82 - S3 (4) 

These equations can be written in terms of the individual flap deflections required 
tor a desired control deflection as follows: 

51 = -5p + Sq - Sr (5) 

52 =   -Sp-Sq   -   Sr (6) 

53 =   Sp   -   Sq -  Sr (7) 

84 =   Sp  +  Sq +  Sr (8) 

The multiple flap deflection testing method is the conventional method in which 
all four flaps are positioned to produce a specified 5p, 6q, and 6r as shown in Eqs. (5) 
through (8). The number of combinations of 5p, 6q. and 5r utilized during the test for 
a particular configuration is normally dictated by the predicted maneuverability, load 
factors, trim conditions, and test time available. 

The data obtained by the multiple flap deflection method during these tests were 
used to calcuate the control effectiveness of the Super-HOBOS. The control effectiveness, 
in the context of this report, is defined as the incremental change in any aerodynamic 
coefficient per degree of control deflection attributable to a change in a particular control 

deflection from its previously undeflectcd position. The change in the aerodynamic 
coefficients between the deflected and undeflected control settings is calculated at 
corresponding   Mach   numbers,   angles   of attack,   and  roll  angles.  The  change  in   the 
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coefficients is divided by the control deflection change to obtain the incremental change 

in the coefficients per degree of control deflection. 

For example, the change in the pitching-moment coefficient per degree (pitch control 

effectiveness) attributable to a pitch control deflection, Cmfi , for a pitch control deflection 
of 5 deg would be calculated as follows: 

L(Cm,a)gq=5   ~   (Cm,a)Sq=oj 
CmSq Sq=5 

(9) 
Sp, Sr= 0 

The control effectiveness coefficients to be presented in Section 4.2 have been calculated 
in the preceding manner. 

For combined control deflections involving pitch, yaw, and roll, the control 

effectiveness was evaluated between its value for a combined pitch, yaw, or roll control 
and its value when pitch, yaw, and roll control were zero. For example, when 5r = 5 
deg and 5q = -10 deg. Cm_     would be calculated as follows: 

(Cm,a) -  (C 
dr= 5 
5q=-10 

mSq   " 5q = -10 
|5 q = oj (10) 

All control effective coefficients  for combined control deflections to be presented in 
Section 4.3 are calculated in this manner. 

3.2.2    Single Flap Deflection Technique 

The single flap deflection testing technique is a method wherein only one flap is 
deflected and control effectiveness data are obtained at various roll angles for a given 
Mach number and angle of attack. Using an imaging technique, only one flap need be 
deflected in oniy one direction to obtain all of the desired combinations of Sp, 5q. and 
6r. This method is particularly applicable to symmetric bodies with a cruciform tail 

arrangement. The method becomes questionable if there are protuberances on the body 
that would affect the control effectivness of one or more flaps, but not all four flaps. 
Furthermore, if flap-to-flap interference occurs the imaging technique would be suspect. 
However, one of the objectives of the test was to determine if these adverse effects would 
preclude the use of the single flap technique on a configuration such as the Super-HOBOS. 

The results of these studies are presented in Section 4.4. 

The method for calculating the control effectiveness using the single flap imaging 

technique for a negative deflection of flap number 1 is presented in the remainder of 
this section. 

10 



AEDC-TR-74-68 

The incremental coefficient data for a single flap deflection is calculated by subtracting 
the coefficient data of the undeflected configuration from the corresponding coefficients 
of the configuration with a single flap deflected. For flap number 1, this is described 
by the following equation: 

DFJ.(\   =,   [<Cx)8u.x-(C:x)5|_0]»liere   M.^,.«d   =   constant (M) 

This is the change in the aerodynamic coefficients (six equations to describe six 

components) for a given negative deflection of flap number 1 at a given Mach number, 
roll angle, and angle of attack. 

It is assumed that the configuration has aerodynamic symmetry in the pitch and 
yaw planes at zero roll angle. This assumption permits the data that would be obtained 

by a negative deflection of flap number 2 to be idealized as the data obtained with a 
negative deflection of flap number 1 at a model roll angle of 90, since flap number 2 
is located at a roll angle of 90 deg with respect to flap number I. This can be written 
in equation form as 

X 52 = -x A SI = -x 
<£a=o öB= 90 t,2> 

Likewise the data that would be obtained by a positive deflection of flap numbers 3 and 
4 are idealized as the data obtained by a negative deflection of flap number 1 at model 
roll angles of 180 deg and -90 deg. respectively. The model roll angles required to obtain 
data for negative deflections of flap number 2 and positive deflections of flap numbers 
3 and 4 using negative deflections of flap number 1   are shown in Fig. 5. 

Thus far no imaging has been employed. The control effectiveness data for positive 

deflections of flap numbers 1 and 2 and negative deflections of flap numbers 3 and 4 
are idealized by the control effectiveness data obtained using negative deflections of flap 
number I oriented in a roll position which is the mirror image of the desired deflection. 

A positive deflection of flap number 1 can be idealized as the mirror image of a negative 
deflection of flap number 1 at a model roll angle of-90 deg (see Fig. 6). The magnitudes 
of the incremental data are the same; however, the signs on the incremental aeroballistic 
side-force, yawing-moment, and rolling-moment coefficients must be changed. A positive 
deflection of flap number 2 can be idealized as the mirror image of a negative deflection 
of flap number 1 at a model roll angle of 180 deg. Likewise, a negative deflection of 
flap numbers 3 and 4 can be idealized as the mirror image of a negative deflection of 
flap number 1 at model roll angles of 90 and 0 deg, respectively. The model roll angles 

and signs on the incremental data required to image data using a negative deflection of 
flap number I  are summarized in Table 3. 

11 
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Once the incremental data have been obtained for all four flaps, the control 
effectiveness is obtained by adding the incremental contribution of each flap and dividing 
by the control deflection angle. This can be written in equation form as follows: 

C        = {[DEL Cm   1 + [DEL Cm J + [DEL Cm J 

1/ „ , (13) 
+ [DEL C      ] j7Sq = -x   «here   aa, M^, and <&a =   constant m,a  S4 = — x)l 

The total incremental data for combined flap deflections are obtained by adding the 
incremental data for each flap at the appropriate deflection angle. A description of the 
single flap and multiple flap techniques of data acquisition can be found in Ref.  1. 

3.3 CORRECTIONS 

The model angle of attack was corrected for tunnel flow angularity. The maximum 
correction applied to the data was 0.50 deg and is a function of Mach number. Balance 

and sting deflections caused by aerodynamic loads on the model were also accounted 

for in the data reduction to determine model angle of attack. Model tare corrections were 
also made to calculate the net aerodynamic forces on the model. 

3.4 PRECISION OF MEASUREMENTS 

The precision of the data presented which can be attributed to errors in the balance 
measurements and tunnel conditions were determined for a confidence level of 95 percent, 
and the values are presented in Table 4. The precision in setting Mach number was ±0.005. 
The Mach number variation in the test section occupied by the model was no greater 
than ±0.002 for Mach numbers up to 0.95 and ±0.01 for Mach numbers greater than 
1.0. The uncertainty in the model angle of attack and angle of roll was ±0.1 deg. The 
precision of the flap control surface deflections and vane angle-of-attack indicator was 
±0.2 deg. 

4.0 RESULTS AND DISCUSSION 

4.1     CONFIGURATION  BUILDUP 

The aerodynamic coefficients for various buildup stages of the Super HOBOS/MK-84 
configuration are shown in Figs. 7 through 9. The normal-force and pitching-moment 

coefficients varied greatly for the different buildup stages as would be expected (Fig. 7). 
The addition of the strakes to the body alone (B2S13) produced a much larger increase 
in CN,a than the addition of the strake to the body with wings (B2S13W4T3F7) for 

all Mach numbers. In fact, adding the strakes when the wings were present produced little, 

12 
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if aoy, contribution to the total normal-fore« coefficient. Thus, a loss of wing lift was 
indicated when the strakes were added to the vehicle. The strakes destabilized the vehicle 
as shown in Cm >a versus C\va. The rolling-moment coefficient (Fig. 8) had a non-zero 
value for configurations with wing tips at M^ = 0.65 and 0.95 at the lower angles of 
attack. The model with wing tips (B2S13W4T3F7 or B2W4T3F7) should have been 
symmetrical and not produced any rolling-moment coefficients at the lower angles of 
attack. The non-zero value for Cjj was felt to be a result of some asymmetries in the 
tips attributable to fabrication. Also, as shown in Fig. 8, the CA,F increased significantly 
when the wings, wing tips, and strakes were added, especially at the higher Mach numbers. 
The side-force and yawing-moment coefficients were approximately zero for the various 
buildup configurations at the lower angles of attack (Fig. 9); yaw control, 5r deflection, 
would be required to trim the vehicle at angles of attack greater than 16 or 17 deg. 

All the data presented in the following sections are for configuration B2S13W4T3F7 
which is the Super HOBOS/MK-84. 

4.2   CONTROL  EFFECTIVENESS  FOR PURE CONTROL DEFLECTIONS 
(MULTIPLE   FLAP TECHNIQUE) 

The aerodynamic coefficients for several values of flap deflections in pitch, 6q, are 

shown in Figs. 10 and 11. The data show (Fig. 10) that the Super HOBOS/MK-84 was 
neutrally or slightly stable for all 8q flap deflections in the 0- to 10-deg angle-of-attack 
range at the lower Mach numbers. The longitudinal stability increased with Mach number, 
attaining a static margin of approximately -0.45d at MM = 1.6. The rolling-moment 
coefficients showed only a slight variation for different 5q at the lower angles of attack, 

but changed significantly at the higher angles of attack (Fig. 11). The forebody axial-force 
coefficient increased with increasing 6q (Fig.  11) as would be expected. 

The normal-force increments and pitch control effectiveness are shown in Fig. 12 
for several values of 8q. In general, CNB and Cmg increased for a 5q = -5 to -10 deg 
and decreased for a 5q = -15 to -20 deg at M^ = 0.4 and 0.65. For M^ = 0.95, there 
was a large decrease in longitudinal control parameters for 8q = -5 as compared with 
5q = -5 for other Mach numbers and as compared with other 5q's at M^ = 0.95. At 
the higher Mach numbers, CN5 and Cm 8 showed less change with 8q especially at M^ 
=   1.6. 

The axial-force increments are shown in Fig. 13 for several pitch control deflections. 
The axial-force increments increased with increasing Sq's as would be expected. 

The rolling-moment and forebody axial-force coefficients for several values of 5p are 

shown in Fig. 14. Both coefficients increased in absolute values with increasing 5p's as 

would be expected. 
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The roll control effectiveness coefficients are shown in Fig. 15. For M^ = 0.4 and 
0.65, Cgj     decreased with increasing Sp, starting from a 6p of -5 deg. Whereas for M^ 
= 0.95, Cßg     increased for a op of -5 to -15 deg, then decreased for a 5p of-20 deg.. 
The changes in roll control effectiveness with changes in 5p were small for M^ = 1.2 

and  1.6. : 

The side-force and yawing-moment coefficients for several values of 6r are shown 

in Fig. 16. The coefficients increased in absolute value with increasing 5r as would be 
expected. 

The side-force increments and yaw control effectiveness are shown in Fig. 17.'For 
MM = 0.4 and 0.65, Cy6r and C„Sl generally tended to decrease with increasing 5r, starting-, 

with a 5r of 5 deg. For M^ = 0.95, however, the directional control parameters increased.' 
for a 5r of 5 to 15 deg. then decreased for a 5r = 20 deg. For MM = 1.2 and 1.6 the 
changes in Cyir and Cmfir  were small with changes in 5r. ■_>..■ 

4.3   CONTROL  EFFECTIVENESS  FOR COMBINED CONTROL  DEFLECTIONS'" 
(MULTIPLE  FLAP TECHNIQUE) 

The effect of combined pitch and roll control deflections on the aerodynamic 
coefficients of the Super HOBOS is shown in Figs. 18 through 21. The effect of 
superimposing roll control on pitch control with regard to the normal-force and 

pitching-moment coefficients was small when compared with pure pitch control as shown 
in Figs. 18 and 20. If anything, some small decrease occurred in Cm >a when 5p was added 
to 5q. The rolling-moment coefficient for M^ = 0.4 and 0.65 showed a marked decrease 

in absolute value at the lower angles of attack for combined pitch and roll deflections 
as compared with just roll deflections (Figs. 19 and 21). For M^ > 0.95, the absolute 
value of the rolling-moment coefficient increased significantly for combined pitch and roll 
control deflections at positive angles of attack. At negative angles of attack the opposite 
is true. 

The effect of combined pitch, roll, and yaw control deflections on the aerodynamic 
coefficients of the Super HOBOS is shown in Figs. 22 through 24. As shown in Fig. 
22, the effect of combined pitch, roll and yaw control on the normal-force and 
pitching-moment coefficients was small. However, the effect on the rolling-moment 
coefficient was the same as mentioned above and tended to decrease the absolute values 
for M^ = 0.4 and 0.65 and increase the values for M, > 0.95 for positive angles of attack 
(Fig. 23). The side-force and yawing-moment coefficients showed an increase in absolute 
values attributable to the effect of combining pitch, roll, and yaw control as compared 
with pure yaw control, particularly at the higher Mach numbers, M^ > 0.95 (Fig. 24). 

14 



AEDC-TR-74-68 

The effect of combined pitch and yaw control deflections on the aerodynamic 
coefficients is shown in Figs. 25 through 28. Again, the effect of superimposing yaw control 
on pitch control with regard to the normal-force and pitehing-moment coefficients was 

small when compared with pure pitch control (Figs. 25 and 27). The effect of combined 
pitch and yaw control on the side-force and yawing-moment coefficients at M^ = 0.4 
and 0.65 was to decrease the absolute values when compared to pure yaw control (Figs. 
26 and 28), especially for a combined 5q of 15 deg and 5r of 5 deg (Fig. 28). For 
M^ > 0.95, the effect of combined pitch and yaw control on the side-force and 

yawing-moment coefficient was the same as mentioned earlier and tended to increase their 
absolute values as compared to pure yaw control. 

The control effectiveness coefficients for combined control deflections are shown in 
Figs. 29 through 32. Figure 29 shows the influence of roll and/or yaw control added 

to a pitch control of 5q = -10 deg on the normal-force increment and pitch control 
effectiveness. As shown in the figure, the combined control deflections caused a 20- to 
30-percent decrease in both CN? and CmA at the lower Mach numbers as compared 

with a pure pitch control of 5q = -10 deg. Figure 30 shows the effect of roll or yaw 
control added to a pitch control of 6q = -15 deg on CN . and Cm & . Again, the combined 
control deflections showed a decrease of approximately 10 percent in the longitudinal 
control parameters at the lower Mach numbers. 

The effect of pitch and/or yaw control added to a roll control of 5p = -5 deg on 
the roll control effectiveness is shown in Fig. 31. As shown in the figure, the influence 
of both pitch and/or yaw control deflections added to a roll control deflection of 6p 
= -5 deg was to significantly decrease the value of the roll control effectiveness at M^ 
= 0.4 and 0.65 when compared with a pure roll control of 5p = -5 deg. The reduction 
of Cfi. was particularly severe for 6q = -15 deg at negative angles of attack at the lower 
Mach numbers. At the higher Mach numbers. M^ > 0.95, the effect of combined control 
deflections was to increase C£fi at the positive angles of attack when compared with 
a pure roll control of öp = -5 deg. The opposite was true for the negative angles of 
attack at M   > 0.95. oe 

The effect of pitch and/or roll control added to a yaw control of 5r = 5 deg on 
the side-force increments and yaw control effectiveness is shown in Fig. 32. In general, 

the effect of combining pitch and/or roll control with yaw control was to significantly 
decrease Cy6r and C„6r at M^ = 0.4 and 0.65, particularly at the lower angles of attack, 
when compared with a pure yaw control of 6r = 5 deg. At the higher Mach numbers, 

M^ > 0.95, the effect of adding pitch and/or roll control with yaw control was to increase 
the absolute values of Cy5r and C„ST when compared with a pure yaw control of Sr 
= 5 deg, except for a 5q = -15 deg at negative angles of attack. 
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4.4 COMPARISON OF CONTROL  EFFECTIVENESS DATA OBTAINED BY 
SINGLE  FLAP AND MULTIPLE  FLAP TECHNIQUES 

The control effectiveness coefficients presented in this section were obtained using 
negative deflections on flap number 1 (single flap technique) and negative or positive 
deflections of all four flaps (multiple flap technique). The procedure and data reduction 
technique have been presented earlier in Section 3.2. 

The comparisons of the control effectiveness coefficients obtained by single flap and 
multiple flap techniques are shown in Figs. 33 through 37. As shown in the figures, the 
comparisons do not agree. The control effectiveness coefficients obtained by the single 
flap technique were significantly less than those obtained by the multiple flap technique. 

The best agreement between data obtained by single flap and multiple flap techniques 
was the roll control effectiveness at M^ = 0.65 (Fig. 35). Also, all the control effectiveness 
data agreed better at M^ = 0.65 than 0.95. 

The large differences between data obtained using the single flap and multiple flap 
techniques may have been the result of a combination of several effects including balance 
inaccuracies, flap-setting errors, flap-to-body interference, and flap-to-flap interference. It 
should be noted that the uncertainties in the coefficient data were larger when only one 

flap was deflected (single flap technique). One reason for this was that the data were 
obtained by adding the four incremental contributions at each fin location as shown in 
Eq. (16), and this adding of the incremental data could have increased the uncertainties 
by a factor of four. Also the incremental force attributable to the fin deflection only 
is normally very small when compared with the gross balance force and is one-fourth 
or less of the increment obtained by deflecting all four fins. However, the moment data 
should not be affected to the same degree as the force data since the moment arms caused 
by fin deflection are large enough to give good balance resolution for relatively small 

forces. 

Previous tests using this technique (Ref. I) did not produce results that exhibited 
such a large discrepancy. However, the previous data were obtained using smaller flaps 
with the same size body diameter. The problem herein appears to have been a result 
of tlap-to-flap interference and was worse when using 5q controls where flap numbers 
1 and 4 (-5q) were positioned toward each other. The same was true for Sr control where 
flap numbers 3 and 4 were positioned together. The best agreement occurred when all 

flaps were positioned away from each other as was the case for 5p control. 

4.5 AXIAL-FORCE DATA 

The axial-force and forebody axial-force coefficients versus Mach number for a = 

0 arc presented in Fig. 38 for Super HOBOS/MK-84 configuration B3S13W4T3F7. As 
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shown in the figure, the drag rise began at approximately M^ = 0.90, reached a maximum 
CA  of 1.02 at M^ =  1.05, and remained fairly constant up to M^ = 1.60. 

4.6 CONTROL FLAP HINGE-MOMENT COEFFICIENTS 

The control surface hinge-moment coefficients for flap numbers 1 and 2 are presented 
in Fig. 39 for several pitch control deflections. The hinge-moment coefficients generally 

remained constant or increased with angle of attack for M^ = 0.4 and 0.65, except for 
6q = -20 deg where the coefficient first decreased, then increased with a^. Also, the center 
of pressure was forward of the hinge line, producing aiding moments for M,., = 0.4 and 
0.65, except for zero control deflections and the higher angles of attack for 5q = -5 
deg. For M^ = 0.95, the hinge-moment coefficients increased significantly with angle of 
attack except for 5q = -20 deg where the coefficients decreased slightly with aa. The 

center of pressure was forward of the hinge line at the lower angles of attack for M^ 
= 0.95 and aft of the hinge line at the higher angles of attack. For the higher Mach 
numbers, M^ > 1.2, the hinge-moment coefficients generally decreased with angle of attack 
and the center of pressure was always aft of the hinge line except for no control deflections 
(5q = 0). These hinge-moment coefficients arc typical of those obtained with flap numbers 

3 and 4 and of those obtained for various other flap control deflections. The maximum 
hinge-moment coefficient was approximately 0.031 and occurred at Moo= 1.6. For full-scale 
conditions where the reference area equals 1.76 ft2, the reference diameter equals 1.5 
ft, and the dynamic pressure equals approximately 500 psf. the maximum hinge moment 
would be 500 in.-!b. For subsonic flow the maximum hinge-moment coefficient was 
approximately 0.020 which would give a hinge-moment torque of 300 in.-lb at full-scale 
conditions. 

4.7 CALIBRATION DATA OF VANE ANGLE-OF-ATTACK INDICATOR 

The calibration data for the vane angle-of-attack indicator are presented in Fig. 40. 
The slope of the calibration curve, aa versus av, was fairly linear at the lower angles 
of attack for all Mach numbers. The slope remained approximately constant with Mach 

number for M^ < 0.85 and increased for MB = 0.95 to 1.2. The a,d intercept for the 
calibration curve varied somewhat with Mach number, but the intercept was negative for 

Mx < 0.85 and 1.6 and was positive for M^ = 0.95 to  1.2. 

5.0 SUMMARY OF  RESULTS 

The results of this wind tunnel test of a 0.25-scale model of the Super HOBOS/MK-84 

(EOGB-II) munition are summarized as follows: 

1.     The control effectiveness obtained for pitch, yaw, or roll control deflections 

showed no anomalies except at a Mach number of 0.95 and a control 
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deflection of -5 deg where the control effectiveness in either pitch, roll, 
or yaw showed a large loss compared with results at other Mach numbers 

and control settings. 

2. The effect of adding roll and/or yaw control deflections to a pitch control 
deflection was to decrease the normal-force increments and pitch control 

effectiveness coefficients. 

3. The effect of adding pitch and/or yaw control deflections to a roll control 
deflection was to significantly decrease the roll control effectiveness for 
Mach numbers 0.4 and 0.65 and to increase the roll control effectiveness 
for Mach number >0.95 at positive angles of attack. 

4. The effect of adding pitch and/or roll control deflections to a yaw control 
deflection was to significantly decrease the side-force increment and yaw 
control effectiveness coefficients for Mach numbers 0.4 and 0.65 and to 
increase these coefficients for Mach numbers >0.95 at positive angles of 

attack. 

5. The agreement between the control effectiveness coefficients obtained by 

single flap and multiple flap techniques was not satisfactory and is believed 
to be a consequence of flap-to-flap interference. 

6. The hinge-moment coefficients show some variation with angle of attack, 
especially at Mach number 0.95 and, in general, the center of pressure on 
the flaps was forward of the hinge line for the lower Mach numbers, <0.95, 
and aft of the hinge line for the higher Mach numbers. 

7. The angle-of-attack vane calibration data were linear with angle of attack 
up to 10 deg and indicated a small negative angle offset for Mach numbers 

<0.85-and 1.6 and a small positive angle offset for Mach numbers 0.95 
to  1.2. 
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Figure 9.  Comparison of side-force and yawing-moment coefficients for configurations B2, 
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SYM CONFIGURATION MRCH NO 6p  6q  6r 
D B2S13WMT3F7 0.4Q OOO 
O B2S13WMT3F7 O.MO -5        0        0 
A B2S13MIJT3F7 O.MO 0    -10        0 
O B2S13wm3F7 Q.UO -5-10        0 
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Figure 18.   Effect of roll control, 5p = -5 deg, and pitch control, 5q = -10 deg, deflections 
on the normal-force and pitching-moment coefficients of the Super HOBOS/MK-84. 
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SYM CONFIGURATION MACH NO 6p 6q 6r 
□ B2S13WHT3F7 0.65 0 0 0 
0 B2S13WMT3F7 0.65 -5 0 0 
A B2S13W«4T3F7 0.65 0 -10 0 
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STM CONFIGURATION MACH NO 6p 6q 6r 

□ B2S13WHT3F7 0.95 0 0 0 
0 B2S13HMT3F7 0.95 -5 0 0 
A B2S13WHT3F7 0.95 0 -10 0 
o B2S13WUT3F7 0.95 -5 -10 0 
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StM CONFIGURATION MACH NO 6p 6q 6r 
□ B2S13W4T3F7 1.20 0 0 0 
O B2S13WHT3F7 1.20 -5 0 0 
A B2S13WHT3F7 1.20 0 -10 0 
O B2S13W4T3F7 1.20 -5 -10 0 
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SYM CONFIGURATION MRCH NO 6p 6q 6r 

□ B2S13«m3F7 1.60 0 0 0 
0 B2S13WHT3F7 1.60 -5 0 0 
A B2S13W4T3F7 1.60 0 -10 0 
0 B2S13W4T3F7 1.60 -5 -10 0 
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Figure 18.  Concluded. 
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STH CONFIGURATION MACH NO 6p      6q      ftr 
Q B2S13WT3F7 0.10 OOO 
O B2S13HUT3F7 O.VO -5       0       0 
A B2S13WT3F7 0.40 0    -10       0 
O B2SI3HHT3F7 O.üO -5    -10       0 
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Figure 19.   Effect of roll control, 5p = -5 deg, and pitch control, 5q = -10 deg, 
deflections on the rolling-moment and axial-force coefficients of the 
Super HOBOS/MK-84. 
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SYH CONFIGURATION MACH NO 6p 6q 6r 
D B2S13W4T3F7 0.95 0 0 0 
O B2S13W4T3F7 0.95 -5 0 0 
A B2S13W4T3F7 0.95 0 -10 0 
O B2S13HUT3F7 0.95 -5 -10 0 
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STH CONFIGURATION HRCH NO 6p 6q 6r 
O B2S13WIT3F7 1.60 0 0 0 
O B25I3WT3F7 1.60 -5 0 0 
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SYM CONFIGURATION MACH NO 6p 6q 6r 
□ B2S13H4T3F7 0.40 0 0 0 
0 B2S13W4T3F7 0.40 -5 0 0 
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Figure 20.  Effect of roll control, 6p = -5 deg, and pitch control, Sq = -15 deg, deflections 
on the normal-force and pitching-moment coefficients of the Super HOBOS/MK-84. 
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STM CONFIGURATION MRCH NO 6p      6q 6r 
□ B2S13WHT3F7 0.95 0        0 0 
O B2S13WMT3F7 0.95 -5        0 0 
A B2S13W4T3F7 0.95 0-15 0 
O B2S13W4T3F7 0.95 -5-15 0 
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TM CONFIGURATION MfiCH NO 6p 6q 6r 
□ B2S13Wm3F7 1.20 0 0 0 
O B2S13H4T3F7 1.20 -5 0 0 
A B2S13W4T3F7 1.20 0 -15 0 
0 B2S13H4T3F7 1.20 -5 -15 0 
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STM CONFIGURATION MfiCH NO 6p      6q 6r 
□ B2S13WHT3F7 1.60 0        0 0 
O B2S13W«iT3F7 1.60 -5        0 0 
A B2S13WHT3F7 1.60 0    -15 0 
O B2S13W4T3F7 1.60 -5-15 0 
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SYH CONFIGURATION MACH NO 6p 6q 6r 
Q B2S13HUT3F7 0.40 0 0 0 
0 B2SI3NiiT3F7 O.UO -5 0 0 
A B2S13H1T3F7 0.40 0 -15 0 
0 B2S13WHT3F7 0.40 -5 -15 0 
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Figure 21.   Effect of roll control, 5p = -5 deg, and pitch control, 6q = -15 deg, deflections 
on the normal-force and pitching-moment coefficients of the Super HOBOS/MK-84. 



SYM CONFIGURATION MRCH NO 6p 6q br 
G B2S13WIT3F7 0.65 0 0 0 
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Figure 21.   Continued. 
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STM CONFIGURATION MfiCH NO 6p 6q 6r 
0 B2S13W4T3F7 1.30 0 0 0 
0 B2S13W4T3F7 1.20 -5 0 0 
A B2S13WUT3F7 1.20 0 -15 0 
O B2S13M4T3F7 1.20 -5 -15 0 
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SYM CONFIGURATION MACH NO 6p     6q 6r 
Q B2S13H4T3F7 1.60 0       0 0 
O B2S13WUT3F7 1.60 -5       0 0 
A B2S13H«lT3F7 1.60 0-15 0 
O B2S13WMT3F7 1.60 -S   -15 0 
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Figure 21.   Concluded. 
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Figure 22.   Effect of roll control, 5p = -5 deg, and pitch control, 5q = -10 deg, and yaw control, 5r = 5 deg, 

deflections on the normal-force and pitching-moment coefficients of the super HOBOS/MK-84. 
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Figure 23.  Effect of roll control, 5p = -5 deg, pitch control, 5q = -10 deg, and yaw 
control, 8r = 5 deg, deflections on the rolling-moment and axial-force 
coefficients of the Super HOBOS/MK-84. 
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Figure 23.  Continued. 
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Figure 24.   Effect of roll control. 5p = -5 deg, pitch control, 5q = -10 deg, and yaw 
control, 5r = 5 deg, deflections on the side-force and yawing-moment 
coefficients of the Super HOBOS/MK-84. 
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Figure 25.   Effect of pitch control, 5q = -10 deg, and yaw control, 5r = 5 deg, deflections 
on the normal-force and pitching-moment coefficients of the Super HOBOS/MK-84. 
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Figure 26.   Effect of combined pitch control, Sq = -10 deg, and yaw control, 5r = 5 deg, 
deflections on the side-force and yawing-moment coefficients of the Super HOBOS/MK-84. 
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Figure 27.   Effect of pitch control, 5q = -15 deg, and yaw control, 5r = 5 deg, deflections 
on the normal-force and pitching-moment coefficients of the Super HOBOS/MK-84. 
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Figure 28.   Effect of pitch control, 5q = -15 deg, and yaw control, 5r = 5 deg, deflections 
on the side-force and yawing-moment coefficients of the Super HOBOS/M K-84. 
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Figure 29.  Normal-force increment and pitch control effectiveness for a pitch 
control deflection of 5q = -10 deg, combined with roll and yaw 
control deflections. 
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Figure 30.   Normal-force increment and pitch control effectiveness for a pitch 
control deflection of Öq = -15 deg, combined with roll and yaw 
control deflections. 
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Table 1.  Summary of Model Configurations and Flap Deflections Tested 
a.  Multiple Flap Deflections 

5p 6q Ä 
M * 00 

VUUJ. IgULBLXWU UM. 

. 0.40 0.65 0.75 0.85 0.95 1.05 1.20 1.60 

B2S13W4T3F7 0 0 0 X X X X X X X X 

-5 
-10 
-15 
-20 ' i 

0 -5 
-10 
-15 
-20 ■ 

0 

1 
5 
10 
15 

■ t 20 
-5 -10 0 
-5 -10 0 
-5 -10 5 
0 -10 5 
0 -15 5 ■ ■ ' ' ■ f " | 

B2W4T3F7 0 0 0   X     X   X ___ 

B2S13W4F7 0 0 0   X —   X   X X 

B2S13   —     X —   X   X X 

B2         X —   X — X X 

b.  Single Flap Deflections (52 = 53 = 54 = 0) 

61 a, 
deg 

M * 
00 

0.65 0.85 0.95 1.05 

B2S13W4T3F7 0 0 X X X X 

6 X X X 

12 X X X 

16 X     
' ■ 20       

-10 0 X X X 

6 X X X 

12 X X X 

16 
20 
0 

X     

-15 X X X 

1 6 
12 

X 
X 

X 
X 

X 
X 

\ 
-20 

16 
20 
0 

X     

X X X 

6 X X X 

12 X X X 

16 X     
' ■ \ \ 20 

1 '       

x - indicates Mach numbers tested. 
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Table 2.  Summary of Nominal Test Conditions 

00 
pT, psfa P«,» Psfa q»» Psf Re x 10"6/ft 

0.40 3000 2700 300 3.4 

0.65 2000 1500 440 3.3 

0.75 2000 1400 530 3.6 

0.85 1500 930 470 2.9 

0.95 840 530 3.0 

1.05 750 580 3.1 

1.20 620 620 3.1 

1.60 '' 350 650 3.0 

Table 3.  Summary of Model Roll Angles Required 
for Single Flap Imaging* 

Flap and Deflection Model Roll Angle,()>, 
Angle, deg deg 

+61 -90+ 

-61 0 

+62 180+ 

-62 90 

+63 180 

-63 90+ 

+64 -90 

-64 0+ 

''Data Obtained with Negative Deflections 
of Flap No.   1. 

I Change Signs of Incremental Side-Force, 
Yawing—Moment,  and Rolling-Moment 
Coeficcien'ts. 

Table 4.  Summary of Data Precision 

00 AcN,a ACm,a 
ÄCY,a ACn,a AC*,a 

ACA,a,F &CHMX Aq 

0.40 ±0.39 ±0.43 ±0.39 ±0.24 ±0.026 ±0.077 ±0.0027 ±6.7 

0.65 ±0.25 ±0.29 ±0.27 ±0.16 ±0.017 ±0.052 ±0.0018 ±4.9 

0.95 ±0.20 ±0.24 ±0.22 ±0.14 ±0.014 ±0.043 ±0.0015 ±2.6 

1.20 ±0.17 ±0.21 ±0.19 ±0.12 +0.012 ±0.037 ±0.0013 ±2.3 

1.60 ±0.16 ±0.20 ±0.18 ±0.11 ±0.011 ±0.035 ±0.0012 ±1.6 
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NOMENCLATURE* 

CA Axial-force coefficient, axial force/qJ5 

CA>F Forebody axial-force coefficient, CA - CA,b 

CA >b Base axial-force coefficient (p^ - pb) Ab/q.J» 

CA. Axial-force increment attributable to a pitch control deflection, 

[(CA)6q=x-(CA)Sq=0] 
 r  , deg-1 

oq = x 

Cj Rolling-moment coefficient, rolling moment/qJSd 

QB Roll control effectiveness attributable to a roll deflection, 

Kc2)6p=x-(C0«p=o]   A    , 
 , deg-i 

op = x 

Cm>a Pitching-moment  coefficient,   pitching  moment/qJSd, moment reference 
point at MS 16.00 

Cm a Pitch control effectiveness attributable to a pitch control deflection, 

[(Cm,a)4q=x-(Cm,a)5q=o] 
 , der1 

oq = x 

CN>a Normal-force coefficient, normal force/qJS 

CM . Normal-force increment attributable to a pitch control deflection, 

[(CN,a)6q=x-(CN,a)6q=o] 
 , der1 

oq = x 

Cn>a Yawing-moment   coefficient,   yawing   moment/qJSd,   moment   reference 
point at MS 16.00 

C„Sr Yaw control effectiveness attributable to a yaw control deflection, 

[(Cn,a)6r=x-(Cn,a)6r=ol 
 - , der1 

or = x 

Cy >a Side-force coefficient, side force/qjS 
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Cyfir Side-force increment attributable to a yaw control deflection, 

[(CY,a)ir=x-(CY,a)Sr=o] 

8r = 0 
deg-1 

CHMI Hinge-moment coefficient for control flap number, 1, hinge moment/q^Sd, 
positive trailing edge down 

QiM2 Hinge-moment   coefficient   for   control   flap   number  2,   moment/q^Sd, 
positive trailing edge down 

DEL Cm>a        Incremental   pitching-moment   coefficient   attributable   to   a   single   flap 
deflection, 

d Reference model diameter, 0.375 ft 

MS Model station 

MM   ' Free-stream Mach number 

Pb Model base pressure, psfa 

PT Free-stream total pressure, psfa 

p^ Free-stream static pressure, psfa 

q^ Free-stream dynamic pressure, psf 

Re Free-stream unit Reynolds number, ft-1 

S Reference area, (7rd2)/2, 0.110 ft2 

aa Total or complex angle of attack, deg 

av Angle of attack as indicated by a vane-type angle-of-attack indicator, deg 

61-4 Control deflection angles for the respective control surfaces 1 through 4 
(see Fig. 4), positive when trailing edge is down, deg 

5p Control deflection angle for roll control, 
5p = (-51   - 52 + 83 + 54)/4, deg 

8q Control deflection angle for pitch control, 
5q = (51  + 52 + 53 + 64)/4. deg 
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Sr Control deflection angle for yaw control, 
5r = (-51 + 52 - 53 + 64)/4, deg 

<j> Model roll angle, deg 

<t>a Aerodynamic roll angle, deg 

MODEL NOMENCLATURE 

B2 Basic   fuselage  with boattail and  the following protuberances:  (1) side 
conduit, (2) umbilical fitting, (3) harness fairing, (4) launch lugs, and (5) 
angle-of-attack vane 

F7 Flap or control surface 

S13 Strake 

T3 Wing tip 

W4 Wing with wing fence 

"Force and moments are oriented to an acroballistic-axis system as shown in Fig. 4. 
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